
PLCopen
®

for efficiency in automation

The Mapping of the OMAC PackML State Diagram to IEC 61131-3

For a machine, being either part of a production line

or stand-alone, it makes sense to use a state diagram

to harmonize the access to its functionality as well as

measuring the Overall Equipment Effectiveness,

OEE. For this one can define its own state diagram.

However in this document, the state diagram Version

3.0 as defined by www.Make2Pack.org is used, as

developed by the OMAC PackML group (see

www.omac.org).

Using a state diagram also decomposes the appli-

cation software, making it more efficient and flexible,

and less prone to errors.

The OMAC State Diagram looks as follows:

 An Acting State (Green in picture) is one which

represents some processing activity.

 A Wait State (Orange in picture) is used to

identify that a machine has achieved a defined set

of conditions.

 Dual state (Blue) is defined as a machine actively

executing in the chosen mode.

The states in orange and blue are stable states, i.c.

they can be valid for a longer period of time.

The states in green are states that are only valid for a

certain period of time and transfer to the next state

without intervention from an operator. The transition

is automatically done if the state is complete (SC =

State Complete).

Shown above is the full state diagram with the state

Execute (in blue) the producing state. The loop under-

neath, via Suspended, is a waiting loop for material to

be worked upon. The loop above, via Held, is the loop

where the operator holds the system out of the produ-

cing state.

After all products are made, the producing state

Execute is left via Complete, and ready for a new

production order.

At power on, the state Stopped is valid. After a Reset

it moves to the state Idle via Resetting.

Issuing ‘Start’ gets the unit to ‘Execute’ via ‘Starting’.

The PackML state diagram leaves its normal loop via

either Abort or Stop. The Abort is coupled to the error

handling from every state. The Stop is for the operator

interface.

Conversion of the State Diagram to SFC

A State Diagram should be reflected in the

programming environment. One way to do this is to

use Sequential Function Chart, SFC.

SFC describes graphically the sequential behavior of a

control program. It is derived from Petri Nets and IEC

848 Grafcet, with the conversion from a

documentation standard to a set of execution control

elements. As such SFC structures the internal

organization of a program, and helps to decompose a

control problem into manageable parts, while

maintaining the overview.

SFC consists of Steps, linked with Action Blocks and

Transitions. Each step represents a particular state of

the systems being controlled. A transition is

associated with a condition, which, when true, causes

the step before the transition to be deactivated, and the

next step to be activated. Steps are linked to action

blocks, performing a certain control action. Each

element can be programmed in any of the IEC

languages, including SFC itself.

One can use alternative sequences and even parallel

sequences, such as commonly required in batch

applications. For instance, one sequence is used for

the primary process, and the second for monitoring

the overall operating constraints.

Because of its general structure, SFC provides also a

communication tool, combining people of different

backgrounds, departments or countries.

Step 1 N FILL

Step 3

Step 2 S Empty

Transition 1

Transition 2

http://www.make2pack.org/
http://www.omac.org/

PLCopen
®

for efficiency in automation

To map the PackML state diagram, we need to

implement the following normal operation sequences:

Stopped, Resetting, Idle (at specified pre-conditions),

Starting and Execute. After Execute there are 3

alternative options: Complete, Hold, and Suspend,

where the last 2 will continue via Execute.

Error handling via the loops Stop and Abort

All states can also be left via the Stop loops (in case a

stop is commanded) or the Abort loop (in case of an

error). Concerning this error handling, there are

basically two ways of dealing with this:

1 Centralized – all errors in the SFC sequence are

linked to one error related Step

2 De-centralized – for each step in the SFC sequence

an error loop is defined

Centralized error handling

De-centralized error handling example

The main states in PackML for the normal production

process (executing) looks as follows:

STOPPED

RESETTING

IDLE

RESET AND

NOT ABORT

STARTING

START AND

NOT ABORT

PRESET AND

NOT ABORT

EXECUTE

NOT ABORT

COMPLETE

COMPLETING

AND NOT ABORT

The next figure shows a basic implementation of the

full PackML state diagram, including the ‘Abort’ and

‘Stop’ loops, and on the lower right side the ‘Hold’

and ‘Suspend’ loops, which loop back to the

‘Execute’ state. For the error handling option 1 -

centralized is in this case shown via the ‘Abort’ loop.

In the top middle, the abort sequence is specified,

with the ‘Abort’ entry point on top. All other abort

loops refer to this starting point. Also the ‘Stop’ loop

is identified there.

SA1

SA2

SA3

SError

Appl2Cond

Appl3Cond

Appl4Cond

ErrorAll

ErrorAll

ErrorAll

NoErrors

A1

ErrorApplication SA2

ErrorA1

ErrorOff

PLCopen
®

for efficiency in automation

STOPPED

RESETTING ABORTING STOPPING

IDLE

RESET AND

NOT ABORT
ABORT STOP

STARTING

START AND

NOT ABORT
ABORT

STATE COMPLETED

AND NOT ABORT
ABORT

EXECUTE

ABORT

COMPLETE

ABORT

UN-HOLD AND

NOT ABORT

ABORTED

CLEARING

CLEAR

HOLDING

HELD

UN-HOLDING

ABORT

ABORT

ABORT

UN-SUSPEND

AND NOT

ABORT

SUSPENDING

SUSPENDED

UN-

SUSPENDING

ABORT

ABORT

ABORT

HOLD SUSPEND

ABORTING

ABORTING

ABORTING

ABORTING

STOPPING

STOPPING

STOPPING

STOPPING

STOPPED

STOPPED

STOPPING

STOPPING

STOPPING

ABORTING

ABORTING

ABORTING

ABORTING

ABORTING

ABORTING

STOPPING

STOPPING

STOPPINGEXECUTEEXECUTE

STOP

STOP

STOP

STOP

STOP STOP

STOP STOP

STOP STOP

ABORT

ABORTING

ABORT

ABORTING

ABORT

STATE COMPLETED

AND NOT ABORT

STATE COMPLETED

AND NOT ABORT

STATE COMPLETED

AND NOT ABORT

STATE COMPLETED

AND NOT ABORT

STATE COMPLETED

AND NOT ABORT

STATE COMPLETED

AND NOT ABORT

STATE

COMPLETED

STATE

COMPLETED

STATE

COMPLETED

The additional function blocks at the transitions deal with the multimode’s.

Multi-level approach – safety required

This state diagram is valid for several modes, like

Automatic (like above), Semi-Automatic, and

SetUp. Different modes use different states. In the

producing mode all states are applicable, and no

special safety precautions are involved. In the Semi-

Automatic mode the holding loop is not made

available, limiting the feed-in of products to on one

product at a time only for checking purposes. In the

Setup mode there is no production, so the ‘Execute’,

‘Suspending’, and ‘Holding’ loops are not available.

This is coupled to the function blocks in the SFC

program above. For instance, the Starting and

Execute states are only accessible if the SetUpMode

is not set, and

Setup

Automatic

Semi-Auto

Idle

Un-Holding

Starting

UnSuspendingResetting

Stopping Clearing

Completing

Holding

Suspending

Aborting

Held

AbortedStopped

Suspended

CompleteExecuteIdle

Un-Holding

Starting

UnSuspendingResetting

Stopping Clearing

Completing

Holding

Suspending

Aborting

Held

AbortedStopped

Suspended

CompleteExecute

Idle Starting

UnSuspendingResetting

Stopping Clearing

Completing

Suspending

AbortingAbortedStopped

Suspended

CompleteExecuteIdle Starting

UnSuspendingResetting

Stopping Clearing

Completing

Suspending

AbortingAbortedStopped

Suspended

CompleteExecute

Idle

Resetting

Stopping Clearing AbortingAbortedStopped

Idle

Resetting

Stopping Clearing AbortingAbortedStopped

PLCopen
®

for efficiency in automation

the ‘Holding’ loop if SemiAutoModeSelected is not

SET, meaning in Automatic or .

The different states are linked, like shown in the

figure above.

In order to change between these modes, one has to

fulfill the applicable safety requirements. For

instance, a safety approved mode selector can be

used, coupled to the safety requirements in the

Setup mode. For this the PLCopen Safety Speci-

fication is intended. This specification fulfils also

the requirements as specified in the ANSI / PMMI

B155.1-2006 Safety Requirements for Packaging

and Packaging-Related Converting Machines.

In this example, there is no difference in the safety

requirements between the automatic and semi-

automatic modes, unlike the mode Setup.

The safe ModeSelector takes care that unacceptable

changes are avoided, like an inhibition from SetUp

to Automatic, and like mode changes from the

Automatic mode in the execute state without first

stopping. This can be resolved in several ways:

1. The mode change is neglected / not accepted

2. The mode change is accepted, but via the STOP

state

3. The mode change generates an ABORT

In parallel, the safety program takes care that in the

setup mode the drives are in a safe state. For this the

‘Safely Limited Speed’ functionality can be used,

combined with the ‘EnableSwitch’ functionality,

with which the operator can move the machine at a

reduced speed. The functional application program

defines the safely limited speed, while the safety

application checks that the limit set is not exceeded.

In addition, one can couple the emergency switch to

different stop categories per motor.

A small overview of applicable safety function

blocks is shown n the next drawing. For details on

the PLCopen Safety specification, check the website

www.PLCopen.org under TC5 Safety.

Examples of PLCopen Safety Function Block

Introduction into PLCopen

PLCopen creates software concepts that reduce the

costs of industrial automation. These costs savings

are realized in areas such as engineering, training,

operation, and maintenance.

Together with its members, PLCopen creates

specifications to materialize these concepts.

The PLCopen supplier members convert these

specifications into real software products.

The PLCopen user members benefit from these

products in their operation. User members include

OEM like machine builders, as well as end-users

like manufacturing companies in the food &

beverage markets.

As association, PLCopen supports a multi-level

membership, ranging from suppliers to educational

institutes. PLCopen strongly supports the user

community. For this it created additional

membership categories.

PLCopen was founded in 1992 and has headquarters

in The Netherlands with supporting offices in the

United States, China, and Japan.

For more information, please check the website

www.PLCopen.org.

Activate

S_Mode0

Ready

S_Mode0Sel

SF_ModeSelector

SF_ModeSelector

S_Mode1

S_Mode2 S_Mode2Sel

S_Mode3Sel

S_Mode5

S_Mode6

S_Unlock

AutoSetMode

ModeMonitorTime

S_Mode1Sel

S_SetMode

S_Mode7

S_Mode3

S_Mode4

Reset

S_Mode4Sel

S_Mode5Sel

S_Mode7Sel

S_AnyModeSel

S_Mode6Sel

Error

DiagCode

Activate

S_EStopIn

Ready

S_EStopOut

SF_EmergencyStop

SF_EmergencyStop

S_StartReset

S_AutoReset

Error

DiagCode

Reset

Activate

S_StopIn

Ready

S_Standstill

SF_SafeStop2

SF_SafeStop2

AxisID

MonitoringTime

Error

DiagCode

Reset

Activate

S_StopIn

Ready

S_Stopped

SF_SafeStop1

SF_SafeStop1

AxisID

MonitoringTime

Error

DiagCode

Reset

Activate

S_OpMode

Ready

S_SafetyActive

SF_SafelyLimitedSpeed

SF_SafelyLimitedSpeed

S_Enabled

AxisID DiagCode

MonitoringTime

Reset

Error

http://www.plcopen.org/
http://www.plcopen.org/

