
PLCopen
®

for efficiency in automation

Creating PLCopen compliant Function Block libraries

Introduction
One of the problems with software development is that

the increase in efficiency is very low. No Moore’s law

here, no doubling of the efficiency every 18 months.

And it is even worse: with increasing functionality the

complexity increases exponentially. To solve this one

needs modern software development tools and modern

development methodologies.

Part of a modern software development methodology is

creating re-usable components, called function blocks,

which contain part of the application software

functionality. This process is called encapsulation. The

next step is to integrate these tested and documented

components in a library, from which everybody in and

outside the organization can make use, and in this way

create extended application software faster and with

fewer errors. This is where the association PLCopen

contributed with their document on how to create

PLCopen compliant libraries.

The association PLCopen specified these kinds of re-

usable components already for many application areas,

like the function blocks for motion control, safety and

communication. Now PLCopen wants to reach out to

the software engineers that create their own libraries on

top of this. These software engineers can be found in

areas like machine builders and system integrators.

To ease the development of user libraries, PLCopen

together with its members created guidelines on how to

create PLCopen compliant function blocks.

 Level controlled versus Edge triggering 1.

Basically there are 2 types of function blocks, those that

are initialized (started) at a rising input and stay active

till finalized or aborted, and those that are active as long

as the corresponding input is high. The first are called

edge-triggered, and the second are called level-

triggered. An example of edge-triggered functionality is

a move-to-position command which, after being

initialized via the input Execute, runs till finalized. An

example of a level triggered functionality is a PowerOn

function, where the power is switched on as long as the

relevant input (Enable) is set. Notice that the Enable

input pairs with Valid output, and that Execute pairs

with Done.

Sometimes it is important to choose a level-controlled

model rather than an edge-triggered model. For the

detection of a rising edge in a function block, two PLC

cycles are necessary. Thus, if the requirement is to be

able to process a new value in each cycle, an edge-

triggered model cannot serve as a solution. In this case,

a level-controlled function block model is the preferred

way to implement the required functionality.

 Example of edge triggered 2.

The basic function block is the Edge Triggered Etrig.

This is the edge triggered functionality in its most

simple form with only an Execute as input, both in

textual as well as in graphical representation:

Textual representation Graphical representation
FUNCTION_BLOCK ETrig

VAR_INPUT

 xExecute: BOOL;

END_VAR

VAR_OUTPUT

 xDone: BOOL;

 xBusy: BOOL;

 xError: BOOL;

 iErrorID: INT;

END_VAR

The corresponding state diagram is shown hereunder,

and consists of the Dormant, Executing, and Done

linked to Resetting and back to Dormant for the normal

behavior, and via Error for the irregular behavior. For

implementation such as state diagram can be easily

converted to SFC or ST. Examples of this are included

in the specification.

PLCopen
®

for efficiency in automation

The corresponding timing diagrams for Etrig are shown here, where the 3
rd

 diagram shows the behaviour in case of an

error.

 Extending the basis with aborting 3.

In addition to this one can add the aborting functionality to abort the process, which includes additional states Aborting

and Aborted.

Also this state diagram can be easily converted to SFC or ST, for which examples are included in the document.

PLCopen
®

for efficiency in automation

 Including timer functionalities 4.

On top of the abort functionality (or even without this

functionality) one can add timers to make the

functionality more robust. Basically there are 3 options

for timers:

1. TimeOut (To): the overall operating time of the

defined operation should be lower than the time

(in µs) as specified by the input value

udiTimeOut;

2. TimeLimit (Tl): here the time limit is set that

the operation stays within the cycle time. In

that way a longer operation can be divided over

several cycles;

3. And the combination of them both (TlTo).

4.1. What does udiTimeLimit do?

 A function block could, for example, complete a

complex task in a loop. The larger the task is, the more

time that is consumed in the current task of this function

block. The udiTimeLimit parameter can define how

much time per invocation is permitted for consumption

in the respective function block.

4.2. What does udiTimeOut do?

When processing its cycle action, a function block can

be forced to wait for an external event. It can do this in

an internal loop (BusyWait) or it can check in each

cycle whether its task can be completed in full. The

udiTimeOut parameter can define then how much time

is permitted for consumption in the xBusy state.

4.3. Examples with timers without Aborting

4.4. Examples with Aborting and timers

 Level controlled function blocks 5.

For level-controlled functionalities a similar set can be identified with similar states:

Adding the timers Time Out, To, and Time Limit, Tl,

and the combination TlTo is similar. However there are

2 additional blocks for continuous behaviour, meaning

it does not stop so there is no Done state: LConC for

Continuous Behaviour and LConTlC, including the

time limit:

PLCopen
®

for efficiency in automation

Overview of the level controlled function blocks

 Datasheets of Edge triggered and Level 6.

Controller function blocks

Included in the specification itself are the datasheets for

all the listed function blocks. This includes the state

chart, the implementation and for the edge triggered

FBs the timing diagrams.

Also for the LCon functionality, an example of the

corresponding ST code is included with object

orientation. In the appendix an ST code example for the

ETrigATlTo Function Block according to IEC 61131–3

2nd Edition, meaning no object orientation added.

 Conclusion 7.

With the document “Creating PLCopen Compliant

Libraries” the organization shows how users can create

own libraries within the PLCopen concept. This concept

includes both level and edge controlled functionalities,

which are extended by aborting and timer

functionalities. To complete this specification examples

in ST are shown, both in the classical as well as in the

object oriented approach.

PLCopen released this document version 1.0 in May

2017 and it can be downloaded from the PLCopen

website.

info@PLCopen.org

www.PLCopen.org

mailto:info@PLCopen.org
http://www.plcopen.org/

